论文标题

完整交叉口家庭的新坡度不平等

New slope inequalities for families of complete intersections

论文作者

Barja, Miguel Angel, Stoppino, Lidia

论文摘要

我们证明$ f $ -positive $ \ mathcal {o} _x(1)$用于曲线上的任意维纤维$ f \ colon x \ to b $,其一般光纤是完整的交叉点。在家庭是全球完整交叉点的特殊情况下,我们证明了$ f $ f $ f $ f $ \ nathcal {o} _x _x(1)$的数值和必要条件,以及相对规范的sheaf。从这些结果中,我们还得出了在$μ-$不稳定束的投影捆绑包中相对完整交集的纤维的ChOW不稳定性条件。

We prove $f$-positivity of $\mathcal{O}_X(1)$ for arbitrary dimension fibrations over curves $f\colon X\to B$ whose general fibre is a complete intersection. In the special case where the family is a global complete intersection, we prove numerical sufficient and necessary conditions for $f$-positivity of powers of $\mathcal{O}_X(1)$ and for the relative canonical sheaf. From these results we also derive a Chow instability condition for the fibres of relative complete intersections in the projective bundle of a $μ-$unstable bundle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源