论文标题
C.Elegans Connectome的社区通过非背带步行的棱镜
Communities in C.elegans connectome through the prism of non-backtracking walks
论文作者
论文摘要
他们所予以的神经元电路的介观结构与有机功能之间的基本关系是当代神经科学的主要挑战之一。神经元结构连接的模块的形成构成了从单细胞射击到生物体的大规模行为的转换,强调了它们在数据中准确分析的重要性。尽管连接组通常以神经元连接的严重稀疏性为特征,但在网络稀疏的情况下,网络理论和机器学习的最新进展揭示了传统使用的社区检测方法的基本局限性。在这里,我们研究了C.Elegans结构连接组中的最佳社区结构,为此我们利用了一种基于非折线随机步行的非惯性方法,实际上消除了稀疏性问题。与先前的渐近结果完全一致,我们证明,非背带步行将地面真相注释分解为随机块模型(SBM)上的群集,其大小和密度比与简单随机步行相关的光谱方法更好。基于群集可检测性阈值,我们确定了最近映射的C.Elegans连接组中的最佳数量模块为10,这与非背包流动流矩阵中隔离的特征值的数量完全相对应。从广义上讲,我们的工作提供了一个强大的基于网络的框架,以揭示稀疏连接数据集中的介观结构,从而铺平了方法,以进一步研究不同功能的连接组机制。
The fundamental relationship between the mesoscopic structure of neuronal circuits and organismic functions they subserve is one of the major challenges in contemporary neuroscience. Formation of structurally connected modules of neurons enacts the conversion from single-cell firing to large-scale behaviour of an organism, highlighting the importance of their accurate profiling in the data. While connectomes are typically characterized by significant sparsity of neuronal connections, recent advances in network theory and machine learning have revealed fundamental limitations of traditionally used community detection approaches in cases where the network is sparse. Here we studied the optimal community structure in the structural connectome of C.elegans, for which we exploited a non-conventional approach that is based on non-backtracking random walks, virtually eliminating the sparsity issue. In full agreement with the previous asymptotic results, we demonstrated that non-backtracking walks resolve the ground truth annotation into clusters on stochastic block models (SBM) with the size and density of the connectome better than the spectral methods related to simple random walks. Based on the cluster detectability threshold, we determined that the optimal number of modules in a recently mapped connectome of C.elegans is 10, which precisely corresponds to the number of isolated eigenvalues in the spectrum of the non-backtracking flow matrix. Broadly, our work provides a robust network-based framework to reveal mesoscopic structures in sparse connectomic datasets, paving way to further investigation of connectome mechanisms for different functions.