论文标题

dunkl总角动量代数的中心

The centre of the Dunkl total angular momentum algebra

论文作者

Calvert, Kieran, De Martino, Marcelo, Oste, Roy

论文摘要

对于有限反射组的有限维表示$ v $,我们认为我们认为有理由Cherednik代数$ \ Mathsf {h} _ {t,c}(v,w)(v,w)$与$(v,w)$相关的$(v,w)$在parameters $ t \ neq 0 $ t \ neq 0 $和$ c $中。 dunkl总角动量代数$ o_ {t,c}(v,w)$作为lie superalgebra $ \ mathfrak {osp}(1 | 2)$包含dirac操作员的dunkl变形,内部$ \ mathsf { Clifford代数由$ V $产生。 我们表明,对于参数$ c $的每个值,$ o_ {t,c}(v,w)$的中心与单变量多项式环是同构。值得注意的是,中心的生成器会根据$(-1)_v $是组$ W $的一个元素而更改。使用此中心的描述,并使用伪标量表的投影从Clifford代数到$ o_ {t,c}(v,w,w)$,我们建立了类似于``vogan的猜想''的结果。

For a finite dimensional representation $V$ of a finite reflection group $W$, we consider the rational Cherednik algebra $\mathsf{H}_{t,c}(V,W)$ associated with $(V,W)$ at the parameters $t\neq 0$ and $c$. The Dunkl total angular momentum algebra $O_{t,c}(V,W)$ arises as the centraliser algebra of the Lie superalgebra $\mathfrak{osp}(1|2)$ containing a Dunkl deformation of the Dirac operator, inside the tensor product of $\mathsf{H}_{t,c}(V,W)$ and the Clifford algebra generated by $V$. We show that, for every value of the parameter $c$, the centre of $O_{t,c}(V,W)$ is isomorphic to a univariate polynomial ring. Notably, the generator of the centre changes depending on whether or not $(-1)_V$ is an element of the group $W$. Using this description of the centre, and using the projection of the pseudo scalar from the Clifford algebra into $O_{t,c}(V,W)$, we establish results analogous to ``Vogan's conjecture'' for a family of operators depending on suitable elements of the double cover $\tilde{W}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源