论文标题

等离子绑定状态在连续体中以量身定制光结合耦合

Plasmonic Bound States in the Continuum to Tailor Light-Matter Coupling

论文作者

Aigner, Andreas, Tittl, Andreas, Wang, Juan, Weber, Thomas, Kivshar, Yuri, Maier, Stefan A., Ren, Haoran

论文摘要

等离子体共振在增强纳米光子学的光结合相互作用方面起着关键作用,但是它们的低质量因素阻碍了应用高光谱选择性的应用。尽管在介电元面积中已经实现了连续体中具有高质量因素的对称性保护的状态,但撞击光的撞击并未有效耦合到谐振的跨膜,并且由于固有性损失低而以反射的形式丢失。在这里,我们展示了等离激元纳米蛋白元面积的新型设计和3D激光纳米掺杂,该纳米蛋白元面体支持连续体中受对称保护的结合状态,最高为第4阶。通过在参数空间中打破平面外对称性,我们在正常入射率下实现了高质量因子(高达180)模式。我们揭示了平面外对称性破坏可以通过3D纳米元元原子的三角角度进行微调,从而开辟了一种精确控制辐射与内在损失比率的途径。这使我们可以访问不足,临界和过度耦合的方案,我们利用了像素化的分子传感。根据耦合状态,我们观察到分析物引起的负,NO或正调制,从而揭示了定制光 - 物质相互作用的不可否认的重要性。我们的演示提供了一个新型的跨表面平台,用于增强光 - 反物质相互作用,并在光学传感,能量转换,非线性光子学,表面增强光谱和量子光学方面进行了广泛的应用。

Plasmon resonances play a pivotal role in enhancing light-matter interactions in nanophotonics, but their low-quality factors have hindered applications demanding high spectral selectivity. Even though symmetry-protected bound states in the continuum with high-quality factors have been realized in dielectric metasurfaces, impinging light is not efficiently coupled to the resonant metasurfaces and is lost in the form of reflection due to low intrinsic losses. Here, we demonstrate a novel design and 3D laser nanoprinting of plasmonic nanofin metasurfaces, which support symmetry-protected bound states in the continuum up to 4th order. By breaking the nanofins out-of-plane symmetry in parameter space, we achieve high-quality factor (up to 180) modes under normal incidence. We reveal that the out-of-plane symmetry breaking can be fine-tuned by the triangle angle of the 3D nanofin meta-atoms, opening a pathway to precisely control the ratio of radiative to intrinsic losses. This enables access to the under-, critical-, and over-coupled regimes, which we exploit for pixelated molecular sensing. Depending on the coupling regime we observe negative, no, or positive modulation induced by the analyte, unveiling the undeniable importance of tailoring light-matter interaction. Our demonstration provides a novel metasurface platform for enhanced light-matter interaction with a wide range of applications in optical sensing, energy conversion, nonlinear photonics, surface-enhanced spectroscopy, and quantum optics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源