论文标题
在Lebesgue空间中本地存在的本地存在的第二个临界值
on a second critical value for the local existence of solutions in lebesgue spaces
论文作者
论文摘要
我们为时间加权抛物线方程$ u_t -ΔU= h(t)f(u)\ mbox {in}ω\ times(0,t),其中$ω$是任意的平滑域,$ f \ in c(\ mathbb {r} $ h f \ f \ f \ f \ f(0,t),我们为局部存在的解决方案提供了新的条件。 $ u(0)\在l^r(ω)$中。由于我们的结果,考虑到非阴性初始数据的适当行为,我们获得了第二个临界值$ρ^\ star = 2r/(p-1),$时,$ f(u)= u^p $和$ p> 1 + 2r/n $,该级别确定了本地解决方案$ u \ in l^in^in^in^ur^\ in^f in^f in^in^infty(或非)的存在(或非)。
We provide new conditions for the local existence of solutions to the time-weighted parabolic equation $ u_t - Δu = h(t)f(u) \mbox{ in } Ω\times (0,T),$ where $ Ω$ is a arbitrary smooth domain, $f\in C(\mathbb{R})$, $h\in C([0,\infty))$ and $u(0)\in L^r(Ω)$. As consequence of our results, considering a suitable behavior of the non-negative initial data, we obtain a second critical value $ρ^\star = 2r/(p-1),$ when $f(u)=u^p$ and $p> 1 + 2r/N$, which determines the existence (or not) of a local solution $u \in L^\infty((0,T), L^r(Ω)).$