论文标题

两组分解算法和开放量子系统模拟

Two-Unitary Decomposition Algorithm and Open Quantum System Simulation

论文作者

Suri, Nishchay, Barreto, Joseph, Hadfield, Stuart, Wiebe, Nathan, Wudarski, Filip, Marshall, Jeffrey

论文摘要

模拟一般的量子过程,描述了在非自动进化后量子系统的现实相互作用的一般量子过程,对于直接实施单一大门的常规量子计算机而言,量子系统的现实相互作用具有挑战性。我们分析了有前途的方法的复杂性,例如sz.-nagy扩张和单位线的线性组合,这些单位可以通过非单身运算符的概率实现来模拟开放系统,这需要对编码和状态制备甲壳的多次调用。我们提出了一种量子两组分解(TUD)算法,以分解$ d $维操作员$ a $ a $,非零单数值为$ a =(u_1+u_2)/2 $,使用量子单数值转换算法转换量子,避免了经典昂贵的奇异值转换,避免使用经典昂贵的单个值分解($ o o o o o。可以确定实施这两个单位,因此只需要对每个状态准备的单一呼叫。对编码甲骨文的调用也可以大大减少,但要以可接受的测量错误为代价。由于TUD方法可用于实现非独立运算符,因此它在线性代数和量子机学习中也具有潜在的应用。

Simulating general quantum processes that describe realistic interactions of quantum systems following a non-unitary evolution is challenging for conventional quantum computers that directly implement unitary gates. We analyze complexities for promising methods such as the Sz.-Nagy dilation and linear combination of unitaries that can simulate open systems by the probabilistic realization of non-unitary operators, requiring multiple calls to both the encoding and state preparation oracles. We propose a quantum two-unitary decomposition (TUD) algorithm to decompose a $d$-dimensional operator $A$ with non-zero singular values as $A=(U_1+U_2)/2$ using the quantum singular value transformation algorithm, avoiding classically expensive singular value decomposition (SVD) with an $O(d^3)$ overhead in time. The two unitaries can be deterministically implemented, thus requiring only a single call to the state preparation oracle for each. The calls to the encoding oracle can also be reduced significantly at the expense of an acceptable error in measurements. Since the TUD method can be used to implement non-unitary operators as only two unitaries, it also has potential applications in linear algebra and quantum machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源