论文标题
通过分位风险最小化可能的域概括
Probable Domain Generalization via Quantile Risk Minimization
论文作者
论文摘要
域的概括(DG)通过利用从多个相关训练分布或域中绘制的数据来寻求在看不见的测试分布上表现良好的预测因子。为了实现这一目标,在可能的域集中,DG通常被称为平均或最差的问题。但是,平均表现良好的预测因子缺乏稳健性,而在最坏情况下表现良好的预测因子往往过于保存。为了解决这个问题,我们为DG提出了一个新的概率框架,目标是学习具有很高概率的预测因子。我们的关键想法是,在培训期间看到的分配变化应该在测试时告诉我们可能的转变,我们通过将培训和测试域明确关联,作为从同一基本元分布中抽取的培训和测试域。为了实现可能的DG,我们提出了一个称为分位风险最小化(QRM)的新优化问题。通过最大程度地减少预测因子在域上的风险分布的$α$ Quantile,QRM寻求具有概率$α$的预测指标。在实践中求解QRM,我们提出了经验QRM(EQRM)算法并提供:(i)EQRM的概括; (ii)EQRM在$α\至1 $中恢复因果预测因子的条件。在我们的实验中,我们为DG引入了更全面的以分数为中心的评估协议,并证明EQRM在Wild和Domainbed的数据集上的表现优于最先进的基线。
Domain generalization (DG) seeks predictors which perform well on unseen test distributions by leveraging data drawn from multiple related training distributions or domains. To achieve this, DG is commonly formulated as an average- or worst-case problem over the set of possible domains. However, predictors that perform well on average lack robustness while predictors that perform well in the worst case tend to be overly-conservative. To address this, we propose a new probabilistic framework for DG where the goal is to learn predictors that perform well with high probability. Our key idea is that distribution shifts seen during training should inform us of probable shifts at test time, which we realize by explicitly relating training and test domains as draws from the same underlying meta-distribution. To achieve probable DG, we propose a new optimization problem called Quantile Risk Minimization (QRM). By minimizing the $α$-quantile of predictor's risk distribution over domains, QRM seeks predictors that perform well with probability $α$. To solve QRM in practice, we propose the Empirical QRM (EQRM) algorithm and provide: (i) a generalization bound for EQRM; and (ii) the conditions under which EQRM recovers the causal predictor as $α\to 1$. In our experiments, we introduce a more holistic quantile-focused evaluation protocol for DG and demonstrate that EQRM outperforms state-of-the-art baselines on datasets from WILDS and DomainBed.