论文标题
纠缠长度尺度将螺纹与熔体中未结和非凝聚环聚合物的分支分开
Entanglement length scale separates threading from branching of unknotted and non-concatenated ring polymers in melts
论文作者
论文摘要
当前关于在熔融条件下未结和非凝聚环聚合物的构象和动力学的理论将每个环描述为树状双重折叠对象。虽然模拟的证据在单个环级别上支持这张图片,但其他作品也显示了一对戒指,也相互线索 - 在树理论中忽略了一个功能。在这里,我们使用以不同的弯曲刚度融化的环融化环融化了二分法。我们发现,环是在纠缠长度尺度上和更高上方的双折(对于更硬的环),而螺纹位于较小的尺度上。不同的理论在树结构的细节上不同意,即树的骨架的分形维度。在更硬的融化中,我们发现了主链自我避免缩放的指示,而更灵活的链条并未表现出这种状态。此外,由于其他环的运动,这些理论通常忽略了螺纹,并为渐进约束释放(管扩张)对单个环松弛的影响分配了不同的重要性。尽管每个螺纹仅在双重折叠结构中创建一个小的开口,但螺纹循环的长度可能大大,并且长度可能超过纠缠量表。如果通过固定在太空中的其他环的一小部分来阻碍,我们将螺纹约束与环松弛时间的差异联系起来。当前的理论不能预测这种差异和预测速度比测得的环的扩散更快,这也指出了螺纹约束在非封装系统中的相关性。通过明确的螺纹约束对理论进行修订可能会阐明拓扑玻璃的猜想存在的有效性。
Current theories on the conformation and dynamics of unknotted and non-concatenated ring polymers in melt conditions describe each ring as a tree-like double-folded object. While evidence from simulations supports this picture on a single ring level, other works show pairs of rings also thread each other - a feature overlooked in the tree theories. Here we reconcile this dichotomy using Monte-Carlo simulations of the ring melts with different bending rigidity. We find that rings are double-folded (more strongly for stiffer rings) on and above the entanglement length scale, while the threadings are localized on smaller scales. The different theories disagree on the details of the tree structure, i.e the fractal dimension of the backbone of the tree. In the stiffer melts we find an indication of a self-avoiding scaling of the backbone, while more flexible chains do not exhibit such a regime. Moreover, the theories commonly neglect threadings, and assign different importance to the impact of the progressive constraint release (tube dilation) on single ring relaxation due to the motion of other rings. Despite each threading creates only a small opening in the double-folded structure, the threading loops can be numerous and their length can exceed substantially the entanglement scale. We link the threading constraints to the divergence of the relaxation time of a ring, if the tube dilation is hindered by pinning a fraction of other rings in space. Current theories do not predict such divergence and predict faster than measured diffusion of rings, pointing at the relevance of the threading constraints in unpinned systems as well. Revision of the theories with explicit threading constraints might elucidate the validity of the conjectured existence of topological glass.