论文标题

berezinskii-kosterlitz-超薄pbtio $ _3 $/srtio $ _3 $ superlattices

Berezinskii-Kosterlitz-Thouless phases in ultra-thin PbTiO$_3$/SrTiO$_3$ superlattices

论文作者

Gómez-Ortiz, Fernando, García-Fernández, Pablo, López, Juan M., Junquera, Javier

论文摘要

我们研究了Berezinskii-Kosterlitz-thouless(bkt)阶段的出现(pbtio $ _3 $)$ _ 3 $/(srtio $ _3 $)$ _ 3 $ superlattices通过第二个原则模拟。超过$ε= 0.25 \%$的阈值拉伸外延应变,超晶格中的局部偶极矩局限于膜平面,因此极化可以有效地将其视为二维。偶极 - 偶极与距离相关的衰减的分析,以及对缺陷密度及其作为温度功能的分布的研究,在一系列温度下支持BKT阶段的存在,介导有序的铁电(低$ t $)稳定(低$ t $),以及无序的Paraelect paraelect阶段,以及无序的Paraelect paraelect $ t rm c = bk bk bk bk bk bk bk bk。该BKT阶段的特征是准距离顺序(其签名是与距离相关性的幂律衰减),而紧密界限的涡流 - 抗反构成对的出现,其密度由热激活过程确定。拟议的PBTIO $ _ {3} $/srtio $ _ {3} $超晶格模型和施加的机械边界条件都是实验可行的,这为对铁电材料中这些新的拓扑阶段的首次实验观察打开了大门。

We study the emergence of Berezinskii-Kosterlitz-Thouless (BKT) phases in (PbTiO$_3$)$_3$/(SrTiO$_3$)$_3$ superlattices by means of second-principles simulations. Beyond a threshold tensile epitaxial strain of $ε= 0.25 \%$ the local dipole moments within the superlattices are confined to the film-plane, and thus the polarization can be effectively considered as two-dimensional. The analysis of the decay of the dipole-dipole correlation with the distance, together with the study of the density of defects and its distribution as function of temperature, supports the existence of a BKT phase in a range of temperature mediating the ordered ferroelectric (stable at low $T$), and the disordered paraelectric phase that appears beyond a critical temperature $T_{\rm BKT}$. This BKT phase is characterized by quasi-long-range order (whose signature is a power-law decay of the correlations with the distance), and the emergence of tightly bounded vortex-antivortex pairs whose density is determined by a thermal activation process. The proposed PbTiO$_{3}$/SrTiO$_{3}$ superlattice model and the imposed mechanical boundary conditions are both experimentally feasible, opening the door for the first experimental observation of these new topological phases in ferroelectric materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源