论文标题
$ \ mathbb {q} _2(\ sqrt {5})$的添加形式的溶解度两次奇数。
Solubility of Additive Forms of Twice Odd Degree over $\mathbb{Q}_2(\sqrt{5})$
论文作者
论文摘要
我们证明,在未施加的二次扩展上,$ d = 2m $,$ m $ odd,$ m $ odd,$ m $ odd $ d = 2m $,$ m \ ge3 $的添加形式,如果variables $ s $ satisifies $ s $ s $ s \ ge 4d+1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1 $ 1。如果$ 3 \ nmid d $,则如果$ s \ ge \ frac {3} {2} {2} d + 1 $存在非平凡的零,则此键是最佳的。如果$ 3 \中间d $,我们给出了$ 3D $变量的表格示例。
We prove that an additive form of degree $d=2m$, $m$ odd, $m\ge3$, over the unramified quadratic extension $\mathbb{Q}_2(\sqrt{5})$ has a nontrivial zero if the number of variables $s$ satisifies $s \ge 4d+1$. If $3 \nmid d$, then there exists a nontrivial zero if $s \ge \frac{3}{2}d + 1$, this bound being optimal. We give examples of forms in $3d$ variables without a nontrivial zero in case that $3 \mid d$.