论文标题

UTE2的超导阶段中的磁场敏感电荷密度波顺序

Magnetic-field sensitive charge density wave orders in the superconducting phase of UTe2

论文作者

Aishwarya, Anuva, May-Mann, Julian, Raghavan, Arjun, Nie, Laimei, Romanelli, Marisa, Ran, Sheng, Saha, Shanta R., Paglione, Johnpierre, Butch, Nicholas P., Fradkin, Eduardo, Madhavan, Vidya

论文摘要

对三胞胎超导的强烈兴趣部分源于对异国情调激发(例如非亚伯利亚主要模式,手性超电流和半夸张涡流)的理论预测。但是,当三胞胎超导率出现在密切相关的系统中时,从根本上开始新的状态和意外状态。在这项工作中,我们使用扫描隧道显微镜揭示了沉重的费米昂三重态超导体UTE2中的异常电荷密度波(CDW)。我们的高分辨率地图揭示了一个多组分不相关的CDW,其强度随着场的增加而变得较弱,最终在超导临界场HC2上消失。为了解释这种不寻常的CDW的起源和现象学,我们构建了一个Ginzburg-Landau理论,用于与三个三重态对密度波(PDW)态共存的均匀三重态超导体。该理论引起了女儿CDW,由于其起源在三重态PDW状态,因此对磁场很敏感,并且自然会解释我们的数据。我们发现了对磁场敏感的CDW,并与超导性紧密地交织在一起,提供了重要的新信息,以了解UTE2的顺序参数,并发现了以前尚未探索过的新型三重态PDW顺序的可能存在。

The intense interest in triplet superconductivity partly stems from theoretical predictions of exotic excitations such as non-abelian Majorana modes, chiral supercurrents, and half-quantum vortices. However, fundamentally new, and unexpected states may emerge when triplet superconductivity appears in a strongly correlated system. In this work we use scanning tunneling microscopy to reveal an unusual charge density wave (CDW) order in the heavy fermion triplet superconductor, UTe2. Our high-resolution maps reveal a multi-component incommensurate CDW whose intensity get weaker with increasing field, eventually disappearing at the superconducting critical field, Hc2. To explain the origin and phenomenology of this unusual CDW, we construct a Ginzburg-Landau theory for a uniform triplet superconductor coexisting with three triplet pair density wave (PDW) states. This theory gives rise to daughter CDWs which would be sensitive to magnetic field due to their origin in a triplet PDW state, and naturally explains our data. Our discovery of a CDW sensitive to magnetic fields and strongly intertwined with superconductivity, provides important new information for understanding the order parameter of UTe2 and uncovers the possible existence of a new kind of triplet PDW order which has not been previously explored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源