论文标题
部分可观测时空混沌系统的无模型预测
Neutrino spin-flavour precession in magnetized white dwarf
论文作者
论文摘要
由于众所周知的中微子磁矩值很小,因此中微子旋转风味进动(SFP)的现象需要很高的磁场。这仅使少数适合研究这种现象的系统。通过观察SFP,预计中微子的狄拉克和主要性质将被区分。在这项工作中,我们指出了白矮人(WD)系统在研究中微子的自旋 - 氟腹腔内的潜力。从最近的分析中可以发现,即使没有表现出任何表面磁场,幼年的WDS也可能具有非常强大的内部磁场。磁场的存在增强了冷却过程,并随之增强了中微子冷却过程中中微子的自旋 - 富弗拉维尔脉冲。采用标准WD规格,我们分析了磁化的WD是否是区分中微子的狄拉克和主要性质的合适环境。较低的自旋风味过渡概率的值意味着减少活性中微子通量,这可以在陆生中微子探测器中估算。我们发现,与Majorana Neutrino相比,Dirac Neutminos的自旋风味过渡概率要高得多,该中微子将活跃的中微子口味转化为无菌的无菌。我们还检查了自旋风味过渡概率对中微子磁矩的敏感性。
Due to notoriously small value of the neutrino magnetic moment, the phenomena of neutrino spin flavour precession (SFP) requires very high magnetic field. This makes only a handful of systems suitable to study this phenomena. By the observation of SFP, the Dirac and Majorana nature of neutrinos is expected to be distinguished. In this work, we point out the potential of white dwarf (WD) system in studying the spin-flavour oscillation of neutrinos. From recent analysis, it has been found that young isolated WDs may harbor very strong internal magnetic field, even without exhibiting any surface magnetic field. The presence of magnetic field enhances the cooling process and along with that, renders the spin-flavour oscillation of neutrinos emitted in the neutrino cooling process. Employing the standard WD specifications, we analyse whether a magnetized WD is a suitable environment to distinguish between the Dirac and Majorana nature of neutrino. Lower value of spin flavour transition probability implies reduced active neutrino flux which is possible to be estimated in terrestrial neutrino detectors. We find that the spin flavour transition probability of Dirac neutrinos is much higher in comparison to the Majorana neutrino which converts the active neutrino flavours to sterile in a significant amount. We also examine the sensitivity of the spin flavour transition probability to the neutrino magnetic moment.