论文标题
相关的分数狄拉克材料
Correlated Fractional Dirac Materials
论文作者
论文摘要
分数狄拉克材料(FDMS)具有分数能量 - 摩托米的关系$ e(\ vec {k})\ sim | | \ vec {k} |^α$,其中$α\; (<1)$是一个真正的非企业数字,与$α= 1 $的常规狄拉克材料中相比。在这里,我们分析了二维和三维FDM中短期和远程库仑排斥的影响。只有强距离相互作用会导致通过量子临界点发生的相关绝缘子的成核。相关量子相变的通用类由相关长度指数$ν^{ - 1} = d-α$和动态缩放指数$ z =α$,由频段曲率设置。另一方面,由于其非分析结构,分数色散受到防止远程相互作用的保护。相反,线性狄拉克色散会在粗晶片下产生,而相关的费米速度在红外状态下对数增加,从而产生了两个流体系统。完全相关的FDMS展现了一个丰富的景观,可满足非常规的新型多体现象。
Fractional Dirac materials (FDMs) feature a fractional energy-momentum relation $E(\vec{k}) \sim |\vec{k}|^α$, where $α\; (<1)$ is a real noninteger number, in contrast to that in conventional Dirac materials with $α=1$. Here we analyze the effects of short- and long-range Coulomb repulsions in two- and three-dimensional FDMs. Only a strong short-range interaction causes nucleation of a correlated insulator that takes place through a quantum critical point. The universality class of the associated quantum phase transition is determined by the correlation length exponent $ν^{-1}=d-α$ and dynamic scaling exponent $z=α$, set by the band curvature. On the other hand, the fractional dispersion is protected against long-range interaction due to its nonanalytic structure. Rather, a linear Dirac dispersion gets generated under coarse graining, and the associated Fermi velocity increases logarithmically in the infrared regime, thereby yielding a two-fluid system. Altogether, correlated FDMs unfold a rich landscape accommodating unconventional emergent many-body phenomena.