论文标题

机器学习辅助电阻理论,用于低雷诺数的螺旋结构

Machine Learning Assisted Resistive Force Theory for Helical Structures at Low Reynolds Number

论文作者

Lim, Sangmin, Habchi, Charbel, Jawed, Mohammad Khalid

论文摘要

可以使用电阻力理论(RFT)或细长的身体理论(SBT)对较小介质中的细长杆上的流体动力(SBT)进行建模。前者代表局部阻力系数的力量,并且在计算上便宜。但是,当涉及远程流体动力相互作用时,它们在物理上不准确。后者在物理上是准确的,但需要求解积分方程,因此在计算上很昂贵。本文与最先进的SBT方法相比,研究了RFT。在此过程中,开发了一种基于神经网络的流体动力学模型,该模型与RFT相似,依赖于局部阻力系数的计算效率。但是,使用来自SBT的数据对网络进行训练(正规化的Stokeslet片段方法)。受过训练的系数的$ r^2 $值为$ \ sim 0.99 $,平均绝对错误为$ 1.6 \ times10^{ - 2} $。机器学习电阻理论(MLRFT)解释了局部流体动力分布,对旋转和转化速度和方向的依赖以及细长对象的几何参数。我们表明,当经典RFT无法准确预测较小的雷诺数量流下的纤细杆上的力,扭矩和拖动时,MLRFT与物理上准确的SBT模拟表现出良好的一致性。在计算速度方面,MLRFT预示了解决反问题的需求,因此,与SBT相比,需要可忽略的计算时间。 MLRFT提出了一种用于鞭毛推进的计算廉价的水动力模型,可用于设计和优化仿生鞭毛机器人和细菌运动的分析。

The hydrodynamic forces on a slender rod in a fluid medium at low Reynolds number can be modeled using resistive force theories (RFTs) or slender body theories (SBTs). The former represent the forces by local drag coefficients and are computationally cheap; however, they are physically inaccurate when long-range hydrodynamic interaction is involved. The later are physically accurate but require solving integral equations and, therefore, are computationally expensive. This paper investigates RFTs in comparison with state-of-the art SBT methods. During the process, a neural network-based hydrodynamic model that -- similar to RFTs -- relies on local drag coefficients for computational efficiency was developed. However, the network is trained using data from an SBT (regularized stokeslet segments method). The $R^2$ value of the trained coefficients were $\sim 0.99$ with mean absolute error of $1.6\times10^{-2}$. The machine learning resistive force theory (MLRFT) accounts for local hydrodynamic forces distribution, the dependence on rotational and translational speeds and directions, and geometric parameters of the slender object. We show that, when classical RFT fails to accurately predict the forces, torques, and drags on slender rods under low Reynolds number flows, MLRFT exhibits good agreement with physically accurate SBT simulations. In terms of computational speed, MLRFT forgoes the need of solving an inverse problem and, therefore, requires negligible computation time in comparison with SBT. MLRFT presents a computationally inexpensive hydrodynamic model for flagellar propulsion can be used in the design and optimization of biomimetic flagellated robots and analysis of bacterial locomotion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源