论文标题

鉴定主教 - 昌理论中的预测空间和预一体化空间

Pre-measure spaces and pre-integration spaces in predicative Bishop-Cheng measure theory

论文作者

Petrakis, Iosif, Zeuner, Max

论文摘要

主教的度量理论(BMT)是局部紧凑型公制空间$ x $的度量理论的抽象,并且使用非正式的概念的互补子集的固定指数家族对其谓语特征至关重要。更一般的主教钟措措施理论(BCMT)是经典的丹尼尔(Daniell)方法的建设性版本,以衡量和集成和高度不可思议,因为其许多基本概念,例如$ p $ inctegrable函数$ l^p $的集成空间,依赖于适当的类别的量化(从构造观点上)。在本文中,我们介绍了预测和预一体化空间的概念,这是衡量标准空间和整合空间的主教 - 昌概念的谓词变化。在主教集理论(BST)中工作,并利用BST内的互补子集的集合属性家庭和索引家族的集合的理论,我们将BMT的隐式,鉴定精神应用于BCMT。作为第一个示例,我们介绍了dirac-measure的互补可拆卸子集的预测空间,集中在一个点上。此外,我们在谓语框架中翻译了从给定的测量空间中的整合空间的非平凡的主教 - 昌的结构,这表明预测空间会导致与之相关的简单功能的预一整合空间。最后,包括集成空间的完成,对规范上可集成的功能的谓语结构$ l^1 $。

Bishop's measure theory (BMT) is an abstraction of the measure theory of a locally compact metric space $X$, and the use of an informal notion of a set-indexed family of complemented subsets is crucial to its predicative character. The more general Bishop-Cheng measure theory (BCMT) is a constructive version of the classical Daniell approach to measure and integration, and highly impredicative, as many of its fundamental notions, such as the integration space of $p$-integrable functions $L^p$, rely on quantification over proper classes (from the constructive point of view). In this paper we introduce the notions of a pre-measure and pre-integration space, a predicative variation of the Bishop-Cheng notion of a measure space and of an integration space, respectively. Working within Bishop Set Theory (BST), and using the theory of set-indexed families of complemented subsets and set-indexed families of real-valued partial functions within BST, we apply the implicit, predicative spirit of BMT to BCMT. As a first example, we present the pre-measure space of complemented detachable subsets of a set $X$ with the Dirac-measure, concentrated at a single point. Furthermore, we translate in our predicative framework the non-trivial, Bishop-Cheng construction of an integration space from a given measure space, showing that a pre-measure space induces the pre-integration space of simple functions associated to it. Finally, a predicative construction of the canonically integrable functions $L^1$, as the completion of an integration space, is included.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源