论文标题
手性随机矩阵的绕组数统计:具有参数依赖性的决定因素的平均比率
Winding Number Statistics for Chiral Random Matrices: Averaging Ratios of Determinants with Parametric Dependence
论文作者
论文摘要
拓扑不变性是物理学不同分支的强大概念,因为它们在扰动下特别强大。我们概括了为手性高斯单位合奏的特定参数模型计算绕组数字统计的思想,以便其他手性随机矩阵集合。尤其是,我们解决了两个手性对称类别,即单一(AIII)和s型(CII),并通过分析计算集合平均值,以具有参数依赖性的决定因素的比率。为此,我们采用了一种表现出令人回味的超对称结构的技术,而我们从未执行任何地图以超空间。
Topological invariance is a powerful concept in different branches of physics as they are particularly robust under perturbations. We generalize the ideas of computing the statistics of winding numbers for a specific parametric model of the chiral Gaussian Unitary Ensemble to other chiral random matrix ensembles. Especially, we address the two chiral symmetry classes, unitary (AIII) and symplectic (CII), and we analytically compute ensemble averages for ratios of determinants with parametric dependence. To this end, we employ a technique that exhibits reminiscent supersymmetric structures while we never carry out any map to superspace.