论文标题

在具有源术语和热记忆的Cahn-Hilliard系统上

On a Cahn-Hilliard system with source term and thermal memory

论文作者

Colli, Pierluigi, Gilardi, Gianni, Signori, Andrea, Sprekels, Jürgen

论文摘要

在数学上引入和分析了Cahn-Hilliard类型的非等热相场系统。该系统构成了具有保守订单参数的非等热相变的经典Caginalp模型的扩展。它将Cahn-Hilliard类型方程与订单参数的源项与内部能量的通用平衡定律结合在一起。代替标准的傅立叶形式,热通量的本构定律以绿色和纳格迪(Green)和纳格迪(Naghdi)开发的理论给出的形式假定,该理论可能解释了进化的热记忆。结果是,内部能量的平衡定律成为热位移或冷冻指数的时间方程式中的二阶方程,即相对于温度时间的原始。我们系统的另一个特定特征是订单参数方程中存在源项,这需要其他数学困难,因为丢失了顺序参数的质量保护。我们在源项上的一般假设下提供了几个数学结果,并且对演变的双孔非线性:存在和连续的依赖性结果显示了针对相应的初始有限值问题的弱和强的解决方案。

A nonisothermal phase field system of Cahn-Hilliard type is introduced and analyzed mathematically. The system constitutes an extension of the classical Caginalp model for nonisothermal phase transitions with a conserved order parameter. It couples a Cahn-Hilliard type equation with source term for the order parameter with the universal balance law of internal energy. In place of the standard Fourier form, the constitutive law of the heat flux is assumed in the form given by the theory developed by Green and Naghdi, which accounts for a possible thermal memory of the evolution. This has the consequence that the balance law of internal energy becomes a second-order in time equation for the thermal displacement or freezing index, that is, a primitive with respect to time of the temperature. Another particular feature of our system is the presence of the source term in the equation for the order parameter, which entails additional mathematical difficulties because the mass conservation of the order parameter is lost. We provide several mathematical results under general assumptions on the source term and the double-well nonlinearity governing the evolution: existence and continuous dependence results are shown for weak and strong solutions to the corresponding initial-boundary value problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源