论文标题
测量$ u(1)_ {l_μ-l_τ} $对称性和逆向中微子质量矩阵的两零纹理($ g-2 $)
Gauged $U(1)_{L_μ-L_τ}$ Symmetry and two-zero Textures of Inverse Neutrino Mass Matrix in light of Muon ($g-2$)
论文作者
论文摘要
在异常的框架中,免费$ u(1)_ {l_μ-l_τ} $模型,带电的标量场通过自发的对称性破坏产生了巨大的量规boson($ z_ {μτ} $)。 $ z_ {μτ} $导致一个环的贡献,对muon异常磁矩。这些标量场还可能出现在右手中微子质量矩阵的结构中,因此,通过与标量领域相关的$ VEVS $连接了MUON($ G-2 $)和低能中微子现象学的可能解释。在目前的工作中,我们考虑了反中微子质量矩阵($m_ν^{ - 1} $)的纹理,其中质量矩阵的任何两个元素为零。在此ANSATZ中,具有Dirac Neutrino质量基质对角线,右手主要中微子质量基质的零(s)在低能有效中微子质量基质(在I型SEESAW中)中对应于零(S)。我们已经意识到了$M_ν^{ - 1} $的两个这样的纹理,可容纳MUON($ G-2 $)和低能中微子现象学。成功解释MUON($ G-2 $)的要求,此外,限制了模型的允许参数空间,并导致中微子混合角,$ CP $不变式和有效的Majorana Mass($ M_ {EE} $)之间的急剧相关性。 The model explains muon ($g-2$) for $M_{Z_{μτ}}$ in the range ($0.035$ GeV-$0.100$ GeV) and $g_{μτ}\approx\mathcal{O}(10^{-4}$) which is found to be consistent with constraints coming from the experiments like CCFR, COHERENT, BABAR, Na62和Na64。
In the framework of anomaly free $U(1)_{L_μ-L_τ}$ model, charged scalar fields give rise to massive gauge boson ($Z_{μτ}$) through spontaneous symmetry breaking. $Z_{μτ}$ leads to one loop contribution to the muon anomalous magnetic moment. These scalar fields may, also, appear in the structure of right-handed neutrino mass matrix, thus, connecting the possible explanation of muon ($g-2$) and low energy neutrino phenomenology through $vevs$ associated with the scalar fields. In the present work, we consider textures of inverse neutrino mass matrix ($M_ν^{-1}$) wherein any two elements of the mass matrix are zero. In this ansatz, with Dirac neutrino mass matrix diagonal, the zero(s) of right-handed Majorana neutrino mass matrix correspond to zero(s) in the low energy effective neutrino mass matrix (within Type-I seesaw). We have realized two such textures of $M_ν^{-1}$ accommodating the muon ($g-2$) and low energy neutrino phenomenology. The requirement of successful explanation of muon ($g-2$), further, constrain the allowed parameter space of the model and results in sharp correlations amongst neutrino mixing angles, $CP$ invariants and effective Majorana mass ($M_{ee}$). The model explains muon ($g-2$) for $M_{Z_{μτ}}$ in the range ($0.035$ GeV-$0.100$ GeV) and $g_{μτ}\approx\mathcal{O}(10^{-4}$) which is found to be consistent with constraints coming from the experiments like CCFR, COHERENT, BABAR, NA62 and NA64.