论文标题

P-ADIC顶点操作员代数

p-adic vertex operator algebras

论文作者

Franc, Cameron, Mason, Geoffrey

论文摘要

我们假设公理是非架构二维玻色质磁场理论的手性的一半,即一个顶点操作员代数,其中P-Adic Banach空间取代了传统的Hilbert空间。我们研究了公理的一些后果,导致构建各种示例,包括P-Adic的Banach环和Virasoro,Heisenberg和Moonshine Module Module Vertex Operator代数的P-Adic版本。这些示例中的某些示例中自然出现了Serre P-AdiC模块化形式,这是经典1分函数的限制。

We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a p-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including p-adic commutative Banach rings and p-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre p-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源