论文标题
永恒的Schwarzschild黑洞的页面曲线在尺寸降低的Dilaton重力模型中
Page Curve for Eternal Schwarzschild Black Hole in Dimensionally-Reduced Model of Dilaton Gravity
论文作者
论文摘要
作为对(1+1)二维引力系统中信息损失悖论主题的贡献,我们研究了(1+1) - 维diLATON重力的模型,该模型源自尺寸减少的四维爱因斯坦 - 希尔伯特(Einstein-Hilbert)作用。减少的作用涉及宇宙常数,并接受黑洞溶液。在将量子场的后反应到1循环阶之后,我们将半经典的场方程触及求解,并将量子校正计算为鹰温度。我们考虑了量子极端表面方法,并援引``岛规则''来计算永恒的schwarzschild黑洞的鹰辐射的细粒熵,并证明它遵循了统一页面曲线。
As a contribution to the subject of the information loss paradox in (1+1)-dimensional gravitational systems, we study a model of (1+1)-dimensional dilaton gravity derived from the four-dimensional Einstein-Hilbert action by dimensional reduction. The reduced action involves the cosmological constant and admits black hole solutions. After including the back-reaction of quantum fields to 1-loop order, we solve the semi-classical field equations perturbatively and compute the quantum correction to the Hawking temperature. We consider the quantum extremal surface approach and invoke the ``island rule'' to compute the fine-grained entropy of the Hawking radiation for an eternal Schwarzschild black hole and demonstrate that it follows the unitary Page curve.