论文标题
SCAGC Half-Heusler化合物的光电和热电特性的第一原理研究
First-principles study of optoelectronic and thermoelectronic properties of the ScAgC half-Heusler compound
论文作者
论文摘要
在这里,我们在SCAGC的光伏(PV)和热电(TE)应用中介绍了一项理论研究。已经使用密度功能理论(DFT)和半古典玻尔兹曼运输理论对电子,光学和热电特性进行了系统的研究。 DFT计算一个直接频段隙为0.47 eV,而$ g_ {0} w_ {0} $方法估算一个1.01 eV的频段隙。我们使用抛物线拟合来估计B1至B4的有效质量值以$γ$ - 点为-0.087(-0.075),-0.17(-0.27),-0.17(-0.17),-0.17(-0.27)和0.049(0.058)(0.058)(0.058),并沿$ qu $ x $ x $ x $ x $ x $ - $ x $γ$ -2 $γ$ -2 $ -2 $γ。此外,在0到10 eV的能量范围内计算光电特性和分析。光导率,折射率和介电功能在可见区域显示出强的光学转变。最低计算的反射率在4.7 eV时为0.24,吸收系数的最高计算值为$ 1.7 \ times10^{6} $ cm $^{ - 1} $ $ 8.5 $ ev。在300 K时,我们预计最大太阳效率(SLME)为33 \%,厚度为$ 1〜μ $ m。 The lattice part of the thermal conductivity shows a maximum value of 3.8 Wm$^{-1}$K$^{-1}$ at $1200$ K. At 1200 K, for electron doping of $3.9\times10^{21}$ cm$^{-3}$, the maximum value of $S^{2}σ/τ$ is $145 \times 10^{14}$ $μ$ wk $^{ - 2} $ cm $^{ - 1} $ s $^{ - 1} $,而对于$ 1.5 \ times10^{21} $ cm $^{ - 3} $的孔掺杂,它是$ 123 \ times 10^{14} $ $μ$ wk $^{ - 2} $ cm $^{ - 1} $ s $^{ - 1} $。最高的$ zt $ $ 1200 $ k预计为$ 0.53 $,而最佳效率预计为$ 8.5 \%\%$ $ $ $,分别为$ 300 $ k和$ 1200 $ k。收集的结果表明,SCAGC化合物是可再生能源(例如太阳能电池和TE应用)的潜在候选者
Here, we present a theoretical study in the context of photovoltaic (PV) and thermoelectric (TE) applications of ScAgC. The electronic, optical, and thermoelectric properties have been investigated systematically using density functional theory (DFT) and semi-classical Boltzmann transport theory. DFT calculates a direct band gap of 0.47 eV, whereas the $G_{0}W_{0}$ method estimates a band gap of 1.01 eV. We used parabola fitting to estimate the effective mass values for bands B1 to B4 at $Γ$-point, which are -0.087 (-0.075), -0.17 (-0.27), -0.17 (-0.27), and 0.049 (0.058) along the $Γ$-$X$ ($Γ$-$L$) direction, respectively. Furthermore, the optoelectronic properties are calculated and analyzed over an energy range of 0 to 10 eV. The optical conductivity, refractive index, and dielectric function show strong optical transitions in the visible region. The lowest calculated reflectivity is 0.24 at 4.7 eV, and the highest calculated value of the absorption coefficient is $1.7\times10^{6}$ cm$^{-1}$ at $8.5$ eV. At 300 K, we expect a maximum solar efficiency (SLME) of 33\% at a thickness of $1~μ$m. The lattice part of the thermal conductivity shows a maximum value of 3.8 Wm$^{-1}$K$^{-1}$ at $1200$ K. At 1200 K, for electron doping of $3.9\times10^{21}$ cm$^{-3}$, the maximum value of $S^{2}σ/τ$ is $145 \times 10^{14}$ $μ$WK$^{-2}$cm$^{-1}$s$^{-1}$, while for hole doping of $1.5\times10^{21}$ cm$^{-3}$, it is $123 \times 10^{14}$ $μ$WK$^{-2}$cm$^{-1}$s$^{-1}$. The highest $ZT$ at $1200$ K is expected to be $0.53$, whereas the optimal efficiency is predicted to be $8.5\%$ for cold and hot temperatures of $300$ K and $1200$ K, respectively. The collected results suggest that the ScAgC compound is a potential candidate for renewable energy sources such as solar cell and TE applications