论文标题
部分可观测时空混沌系统的无模型预测
Proposal and Verification of Novel Machine Learning on Classification Problems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper aims at proposing a new machine learning for classification problems. The classification problem has a wide range of applications, and there are many approaches such as decision trees, neural networks, and Bayesian nets. In this paper, we focus on the action of neurons in the brain, especially the EPSP/IPSP cancellation between excitatory and inhibitory synapses, and propose a Machine Learning that does not belong to any conventional method. The feature is to consider one neuron and give it a multivariable Xj (j = 1, 2,.) and its function value F(Xj) as data to the input layer. The multivariable input layer and processing neuron are linked by two lines to each variable node. One line is called an EPSP edge, and the other is called an IPSP edge, and a parameter Δj common to each edge is introduced. The processing neuron is divided back and forth into two parts, and at the front side, a pulse having a width 2Δj and a height 1 is defined around an input X . The latter half of the processing neuron defines a pulse having a width 2Δj centered on the input Xj and a height F(Xj) based on a value obtained from the input layer of F(Xj). This information is defined as belonging to group i. In other words, the group i has a width of 2Δj centered on the input Xj, is defined in a region of height F(Xj), and all outputs of xi within the variable range are F(Xi). This group is learned and stored by a few minutes of the Teaching signals, and the output of the TEST signals is predicted by which group the TEST signals belongs to. The parameter Δj is optimized so that the accuracy of the prediction is maximized. The proposed method was applied to the flower species classification problem of Iris, the rank classification problem of used cars, and the ring classification problem of abalone, and the calculation was compared with the neural networks.