论文标题

部分可观测时空混沌系统的无模型预测

Adaptive Behavioral Model Learning for Software Product Lines

论文作者

Tavassoli, Shaghayegh, Damasceno, Carlos Diego Nascimento, Khosravi, Ramtin, Mousavi, Mohammad Reza

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Behavioral models enable the analysis of the functionality of software product lines (SPL), e.g., model checking and model-based testing. Model learning aims at constructing behavioral models for software systems in some form of a finite state machine. Due to the commonalities among the products of an SPL, it is possible to reuse the previously learned models during the model learning process. In this paper, an adaptive approach (the $\text{PL}^*$ method) for learning the product models of an SPL is presented based on the well-known $L^*$ algorithm. In this method, after model learning of each product, the sequences in the final observation table are stored in a repository which will be used to initialize the observation table of the remaining products to be learned. The proposed algorithm is evaluated on two open-source SPLs and the total learning cost is measured in terms of the number of rounds, the total number of resets and input symbols. The results show that for complex SPLs, the total learning cost for the $\text{PL}^*$ method is significantly lower than that of the non-adaptive learning method in terms of all three metrics. Furthermore, it is observed that the order in which the products are learned affects the efficiency of the $\text{PL}^*$ method. Based on this observation, we introduced a heuristic to determine an ordering which reduces the total cost of adaptive learning in both case studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源