论文标题

部分可观测时空混沌系统的无模型预测

Construction of Symmetric Cubic Surfaces

论文作者

Brundu, Michela, Logar, Alessandro, Polli, Federico

论文摘要

我们考虑组$ \ mathrm {pgl} _4(k)$在$ \ mathbb {p}^3_k $的平滑立方表面上的动作($ k $ angebraialthermbrailly tartimation Zero)。我们以明确的方式对所有平滑的立方表面进行了分类,该立方表面具有非微不足道的稳定剂,相应的稳定器,并根据Eckardt点的排列,$ 27 $线或$ 45 $ Tritangent tritangent Planes获得了每组的几何描述。

We consider the action of the group $\mathrm{PGL}_4(K)$ on the smooth cubic surfaces of $\mathbb{P}^3_K$ ($K$ an algebraically closed field of characteristic zero). We classify, in an explicit way, all the smooth cubic surfaces with non trivial stabilizer, the corresponding stabilizers and obtain a geometric description of each group in terms of permutations of the Eckardt points, of the $27$ lines or of the $45$ tritangent planes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源