论文标题

从完全耦合的大气上的进化模型中预测Trappist-1行星可观察到的大气

Predictions for Observable Atmospheres of Trappist-1 Planets from a Fully Coupled Atmosphere-Interior Evolution Model

论文作者

Krissansen-Totton, Joshua, Fortney, Jonathan J.

论文摘要

Trappist-1行星提供了一个独特的机会来测试当前对岩石行星进化的理解。詹姆斯·韦伯(James Webb)太空望远镜有望表征这些行星的气氛,可能检测到Co $ _2 $,CO,H $ _2 $ O,CH $ _4 $或从水光解离并随后的氢逃生中的非生物O $ _2 $。在这里,我们将耦合的气氛间隔模型应用于Trappist-1行星,以预测它们的现代气氛。该模型以前已被验证为地球和金星,将岩浆海洋结晶连接到了温带地球化学循环。地幔对流,岩浆量大,大气逃逸,地壳氧化,辐射感染的气候模型和深层挥发性循环被明确耦合,以预测8 Gyr以上的散装大气和行星氧化还原。通过采用蒙特卡洛方法,该方法采样了广泛的初始条件和未知参数,我们就当前的trappist-1大气做出了一些初步的预测。我们发现外行星可能有可能但不能保证,但不能保证。在预序序列期间通过氢损失产生的氧气通常被地壳水槽消耗。相反,在所有模型中,内部行星上的氧气积累发生在大约一半。对于内行星的完全大气侵蚀是可能的,但不能保证(在模型运行的20%-50%中发生),而外行星几乎在所有模型模拟中保留了明显的表面挥发物。对于所有保留大量氛围的行星,$ _2 $ domination或Co $ _2 $ -O -o $ _2 $都可以预计氛围;在大多数情况下,水蒸气不太可能是可检测到的大气成分。这些预测必然有很多警告,但是它们与即将到来的观察失调的方式将突出地球界知识中的差距。

The Trappist-1 planets provide a unique opportunity to test the current understanding of rocky planet evolution. The James Webb Space Telescope is expected to characterize the atmospheres of these planets, potentially detecting CO$_2$, CO, H$_2$O, CH$_4$, or abiotic O$_2$ from water photodissociation and subsequent hydrogen escape. Here, we apply a coupled atmosphere-interior evolution model to the Trappist-1 planets to anticipate their modern atmospheres. This model, which has previously been validated for Earth and Venus, connects magma ocean crystallization to temperate geochemical cycling. Mantle convection, magmatic outgassing, atmospheric escape, crustal oxidation, a radiative-convective climate model, and deep volatile cycling are explicitly coupled to anticipate bulk atmospheres and planetary redox evolution over 8 Gyr. By adopting a Monte Carlo approach that samples a broad range of initial conditions and unknown parameters, we make some tentative predictions about current Trappist-1 atmospheres. We find that anoxic atmospheres are probable, but not guaranteed, for the outer planets; oxygen produced via hydrogen loss during the pre-main sequence is typically consumed by crustal sinks. In contrast, oxygen accumulation on the inner planets occurs in around half of all models runs. Complete atmospheric erosion is possible but not assured for the inner planets (occurs in 20%-50% of model runs), whereas the outer planets retain significant surface volatiles in virtually all model simulations. For all planets that retain substantial atmospheres, CO$_2$-dominated or CO$_2$-O$_2$ atmospheres are expected; water vapor is unlikely to be a detectable atmospheric constituent in most cases. There are necessarily many caveats to these predictions, but the ways in which they misalign with upcoming observations will highlight gaps in terrestrial planet knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源