论文标题
使用GAIA DR3的恒星数密度和垂直速度的映射银河系磁盘扰动
Mapping Milky Way disk perturbations in stellar number density and vertical velocity using Gaia DR3
论文作者
论文摘要
我们使用Gaia Data Release 3(DR3)和来自Starhorse的互补的光量表信息绘制了银河系恒星磁盘的数量密度和平均垂直速度,从太阳绘制了大约两千座。对于数量计数,我们仔细掩盖了空间区域,这些空间区域因开放群集,距离巨大或尘埃灭绝而损害,并使用高斯工艺来得出基础数量密度字段的平滑,非参数估计。我们发现数量密度和速度场显着偏离轴对称和镜像对称模型。这些离开,包括盖亚相空间螺旋的投影,标志着磁盘中存在局部干扰。我们确定了恒星数密度和平均垂直速度的两个特征。这些功能之一似乎与当地螺旋臂有关。它在较小的高度上是最突出的,并且在整个磁盘的中间平面上基本上是对称的。密度和速度场的扰动大约是四分之一波长的相移,这表明呼吸模式正在朝着银河经度的方向传播$ l \ sim 270 $ ver。第二个特征是恒星数密度的梯度和相对于半半径的平均垂直速度。该功能延伸到我们分析的整个区域,可能与银河经纱的扩展到太阳能邻域相关,并结合使用更局部的弯曲波。
We have mapped the number density and mean vertical velocity of the Milky Way's stellar disk out to roughly two kiloparsecs from the Sun using Gaia Data Release 3 (DR3) and complementary photo-astrometric distance information from StarHorse. For the number counts, we carefully masked spatial regions that are compromised by open clusters, great distances, or dust extinction and used Gaussian processes to arrive at a smooth, non-parametric estimate for the underlying number density field. We find that the number density and velocity fields depart significantly from an axisymmetric and mirror-symmetric model. These departures, which include projections of the Gaia phase-space spiral, signal the presence of local disturbances in the disk. We identify two features that are present in both stellar number density and mean vertical velocity. One of these features appears to be associated with the Local Spiral Arm. It is most prominent at small heights and is largely symmetric across the mid-plane of the disk. The density and velocity field perturbations are phase-shifted by roughly a quarter wavelength, suggesting a breathing mode that is propagating in the direction of Galactic longitude $l\sim 270$ deg. The second feature is a gradient in the stellar number density and mean vertical velocity with respect to Galactocentric radius. This feature, which extends across the entire region of our analysis, may be associated with the extension of the Galactic warp into the Solar neighbourhood in combination with more localised bending waves.