论文标题
通过置换作用表征酰基界的双曲线
Characterising acylindrical hyperbolicity via permutation actions
论文作者
论文摘要
我们表征了一组的酰基神经性双曲线,该组在集合上的作用的性质(没有任何额外的结构)。特别是,这适用于该组通过左乘法对本身的作用,以及对(完整测量子集的)furstenberg-Poisson边界的作用。
We characterise acylindrical hyperbolicity of a group in terms of properties of an action of the group on a set (without any extra structure). In particular, this applies to the action of the group on itself by left multiplication, as well as the action on a (full measure subset of the) Furstenberg-Poisson boundary.