论文标题
可穿戴机器人的多模式静水压致动器:对质量和节能机会的初步评估
Multimodal Hydrostatic Actuators for Wearable Robots: A Preliminary Assessment of Mass-Saving and Energy-Efficiency Opportunities
论文作者
论文摘要
可穿戴机器人受到执行器的限制,因为它们必须承担自己的电力系统和能源的重量。本文探讨了利用混合模式通过使用液压阀动态重新配置液压执行器的连接来利用混合模式以轻巧有效的系统来满足多个操作点的想法。分析的机会包括1)在高度齿轮电源或快速电源之间切换,2)动态连接能量蓄能器,3)使用锁定机制进行固定。基于膝盖外骨骼案例研究分析,结果表明,齿轮比之间的切换可以导致更轻,更有效的执行器。此外,结果表明,使用累加器提供预紧力的连续力具有巨大的质量潜力,但如果用作短瞬态的功率助推器,则不会显着降低质量。最后,如果工作周期频繁停止,使用锁定阀可以稍微降低电池质量。提出的多模式方案的操作原理用一氧化碳原型证明。
Wearable robots are limited by their actuators performances because they must bear the weight of their own power system and energy source. This paper explores the idea of leveraging hybrid modes to meet multiple operating points with a lightweight and efficient system by using hydraulic valves to dynamically reconfigure the connections of a hydrostatic actuator. The analyzed opportunities consist in 1) switching between a highly geared power source or a fast power source, 2) dynamically connecting an energy accumulator and 3) using a locking mechanism for holding. Based on a knee exoskeleton case study analysis, results show that switching between gearing ratio can lead to a lighter and more efficient actuator. Also, results show that using an accumulator to provide a preload continuous force has great mass-saving potential, but does not reduce mass significantly if used as a power booster for short transients. Finally, using a locking valve can slightly reduce battery mass if the work cycle includes frequent stops. The operating principles of the proposed multimodal schemes are demonstrated with a one-DOF prototype.