论文标题
用有机光发射二极管的基于亚微米自旋的磁场成像
Sub-micron spin-based magnetic field imaging with an organic light emitting diode
论文作者
论文摘要
磁场的量子传感和成像由于其具有高灵敏度和空间分辨率的潜力而引起了广泛的兴趣。用于量子传感的常见系统需要光激发(例如,钻石,原子蒸气磁力计中的氮 - 牙中心)或低温温度(例如鱿鱼,超导速度码头),这对芯片尺度集成和商业可伸缩性构成了挑战。在这里,我们演示了基于磁场成像的基于有机的有机光发射二极管(OLED)量子传感器,该传感器采用空间分辨的磁共振来提供磁场的强大映射。通过将单片OLED视为单个虚拟传感器的数组,我们以〜160 $ $ $ T Hz $^{ - 1/2} $ um $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ um $ $ $ $ $ $ um $ $ $ $ $ $ $ $ $ $ $ $ $ $ $^{ - 2} $。我们的工作展示了基于芯片的OLED激光磁场传感器,以及建立在商业相关和可制造技术的磁场映射的方法。
Quantum sensing and imaging of magnetic fields has attracted broad interests due to its potential for high sensitivity and spatial resolution. Common systems used for quantum sensing require either optical excitation (e.g., nitrogen-vacancy centres in diamond, atomic vapor magnetometers), or cryogenic temperatures (e.g., SQUIDs, superconducting qubits), which pose challenges for chip-scale integration and commercial scalability. Here, we demonstrate an integrated organic light emitting diode (OLED) based quantum sensor for magnetic field imaging, which employs spatially resolved magnetic resonance to provide a robust mapping of magnetic fields. By considering the monolithic OLED as an array of individual virtual sensors, we achieve sub-micron magnetic field mapping with field sensitivity of ~160 $μ$T Hz$^{-1/2}$ um$^{-2}$. Our work demonstrates a chip-scale OLED-based laser free magnetic field sensor and an approach to magnetic field mapping built on a commercially relevant and manufacturable technology.