论文标题
SWIN可变形U-NET变压器(SDAUT)用于可解释的快速MRI
Swin Deformable Attention U-Net Transformer (SDAUT) for Explainable Fast MRI
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Fast MRI aims to reconstruct a high fidelity image from partially observed measurements. Exuberant development in fast MRI using deep learning has been witnessed recently. Meanwhile, novel deep learning paradigms, e.g., Transformer based models, are fast-growing in natural language processing and promptly developed for computer vision and medical image analysis due to their prominent performance. Nevertheless, due to the complexity of the Transformer, the application of fast MRI may not be straightforward. The main obstacle is the computational cost of the self-attention layer, which is the core part of the Transformer, can be expensive for high resolution MRI inputs. In this study, we propose a new Transformer architecture for solving fast MRI that coupled Shifted Windows Transformer with U-Net to reduce the network complexity. We incorporate deformable attention to construe the explainability of our reconstruction model. We empirically demonstrate that our method achieves consistently superior performance on the fast MRI task. Besides, compared to state-of-the-art Transformer models, our method has fewer network parameters while revealing explainability. The code is publicly available at https://github.com/ayanglab/SDAUT.