论文标题
保留平均曲率流量和应用的体积的非本地估计值
Nonlocal estimates for the Volume Preserving Mean Curvature Flow and applications
论文作者
论文摘要
我们获得了在封闭的欧几里得设置中的体积保留平均曲率流(VPMCF)中出现的非置量量的估计值。结果,我们证明了VPMCF有限的时间奇异性的爆炸是平均曲率流(MCF)的古老解决方案,证明可以始终在有限的时间应用单调性方法并获取有关流动渐近性的信息。
We obtain estimates on nonlocal quantities appearing in the Volume Preserving Mean Curvature Flow (VPMCF) in the closed, Euclidean setting. As a result we demonstrate that blowups of finite time singularities of VPMCF are ancient solutions to Mean Curvature Flow (MCF), prove that monotonicity methods may always be applied at finite times and obtain information on the asymptotics of the flow.