论文标题

通过对应关系的双变量代数恢复

A bi-variant algebraic cobordism via correspondences

论文作者

Yokura, Shoji

论文摘要

为A对$(x,y)$定义的双变量理论$ \ mathbb b(x,y)$是一种与富尔顿的属性相似的理论,与富尔顿 - 麦克弗森的bivariant理论$ \ mathbb b(x \ x \ xrightArrow f y)$定义了用于hormphism $ f:x x \ y $ $。在本文中,使用信函构建了双变量的代数$ω^{*,\ sharp}(x,y)$,以至于$ω^{*,\ sharp}(x,pt)$是lee-pandharipande的eLgebraic cobord $ $ y_____________________________*尤其是,$ω^{*}(x,pt)=ω^{*,0}(x,pt)$是levine的同构 - - 莫雷尔的代数cobordism $ω__{ - *}(x)$。也就是说,$ω^{*,\ sharp}(x,y)$是\ emph {lee--pandharipande的bi-variant vesion} bungebraic bungerbaic bundles $ω_ {*,\ sharp}(x)$。

A bi-variant theory $\mathbb B(X,Y)$ defined for a pair $(X,Y)$ is a theory satisfying properties similar to those of Fulton--MacPherson's bivariant theory $\mathbb B(X \xrightarrow f Y)$ defined for a morphism $f:X \to Y$. In this paper, using correspondences we construct a bi-variant algebraic cobordism $Ω^{*,\sharp}(X, Y)$ such that $Ω^{*,\sharp}(X, pt)$ is isomorphic to Lee--Pandharipande's algebraic cobordism of vector bundles $Ω_{-*,\sharp}(X)$. In particular, $Ω^{*}(X, pt)=Ω^{*, 0}(X, pt)$ is isomorphic to Levine--Morel's algebraic cobordism $Ω_{-*}(X)$. Namely, $Ω^{*,\sharp}(X, Y)$ is \emph{a bi-variant vesion} of Lee--Pandharipande's algebraic cobordism of bundles $Ω_{*,\sharp}(X)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源