论文标题

从中微子冷却中推断出上微子饱和密度下的核对称能

Inferring the nuclear symmetry energy at supra saturation density from neutrino cooling

论文作者

Malik, Tuhin, Agrawal, B. K., Providência, Constança

论文摘要

天体物理界的一个雄心勃勃的目标不仅是通过与天体物理学观测来限制中子星(NS)物质的状态(EOS)方程,而且最终也推断出NS组成。然而,除非我们在上超饱和密度($ρ>ρ_0$)上准确确定核对称能,否则NS核心的组成可能会保持不确定。我们研究了如何将核子直接URCA(Durca)过程用作限制高密度核对称能的有效探针。通过应用贝叶斯方法研究不同密度的对称能的相关性,与ns的一些选定特性一起研究对称能的相关性,已经构建了大量最小的EOSS。巴里昂密度上方0.5 FM $^{ - 3} $($ \ sim3ρ_0$)上方的核对称能与NS质量密切相关,在核心durca Neutrino冷却的NS质量中发生在核心中。这使我们能够限制在狭窄界限内核对称能的高密度行为。 {手性有效现场理论的纯中性物质压力约束排除了核心杜尔卡在巨大$ \ lyssim $ 1.4 $ 1.4 $ m_ \ odot $的星星中的开始54和48 MEV。

An ambitious goal of the astrophysical community is not only to constrain the equation of state (EOS) of neutron star (NS) matter by confronting it with astrophysics observations, but ultimately also to infer the NS composition. Nevertheless, the composition of the NS core is likely to remain uncertain unless we have an accurate determination of the nuclear symmetry energy at supra saturation density ($ρ>ρ_0$). We investigate how the nucleonic direct Urca (dUrca) processes can be used as an effective probe to constraint the high density nuclear symmetry energy. A large number of minimally constrained EOSs has been constructed by applying a Bayesian approach to study the correlations of the symmetry energy at different densities with a few selected properties of a NS. The nuclear symmetry energy above the baryon density 0.5 fm$^{-3}$ ($\sim 3 ρ_0$) is found to be strongly correlated with NS mass at which the onset of nucleonic dUrca neutrino cooling takes place in the core. This allows us to constrain the high density behavior of nuclear symmetry energy within narrow bounds. {The pure neutron matter pressure constraint from chiral effective field theory rules out the onset of nucleonic dUrca in stars with a mass $\lesssim$ 1.4 $M_\odot$.} The onset of dUrca inside 1.6 M$_\odot$ to 1.8 M$_\odot$ NS implies a slope of the symmetry energy $L$ at $\sim 2.5~ρ_0$, respectively, between 54 and 48 MeV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源