论文标题
Lieb-Robinson边界的实验测试
Experimental tests of Lieb-Robinson bounds
论文作者
论文摘要
根据研究客户的说法,根据研究客户的说法,根据研究帐户的说法,从它启发的巨大作品来看,埃利奥特·利布(Elliott Lieb)和德里克·鲁滨逊(Derek Robinson)关于“量子旋转系统的有限群体速度”的文章可以被视为\ emph {高影响力纸张},正如研究客户所说。但是,在30多年来,对量子物理学的主要贡献仍然非常机密。 Lieb和Robinson的作品最终在2000年最终吸引了大量受众,随着量子信息理论和实验平台的快速发展,可以在单粒子级别对孤立的量子系统进行表征和操纵。在这篇简短的评论文章中,我首先将提醒读者Lieb和Robinson的作品的中心结果,即存在最大的组速度,以便在非相关量子系统中传播信息。然后,我将回顾与这一发现最紧密相关的实验,从某种意义上说,它们揭示了信息如何在特定的(但“真实”)量子系统中传播。最后,作为一种前景,我将尝试与最近在混沌量子系统中研究的蝴蝶效应的量子版本建立联系。
Judging by the enormous body of work that it has inspired, Elliott Lieb and Derek Robinson's 1972 article on the "Finite Group Velocity of Quantum Spin Systems" can be regarded as a \emph{high-impact paper}, as research accountants say. But for more than 30 years this major contribution to quantum physics has remained pretty much confidential. Lieb and Robinson's work eventually found a large audience in the years 2000, with the rapid and concomitant development of quantum information theory and experimental platforms enabling the characterisation and manipulation of isolated quantum systems at the single-particle level. In this short review article, I will first remind the reader of the central result of Lieb and Robinson's work, namely the existence of a maximum group velocity for the propagation of information in non-relativistic quantum systems. I will then review the experiments that most closely relate to this finding, in the sense that they reveal how information propagates in specific -- yet "real" -- quantum systems. Finally, as an outlook, I will attempt to make a connection with the quantum version of the butterfly effect recently studied in chaotic quantum systems.