论文标题
在哈密顿耦合存在下,从两分量量子系统中提取的最佳本地工作提取
Optimal local work extraction from bipartite quantum systems in the presence of Hamiltonian couplings
论文作者
论文摘要
我们研究了找到麦角综合征的局部类似物的问题,这是可以从系统中提取的最大工作,如果我们只能在给定子系统上应用局部统一转换。 特别是,在特殊情况下,我们为本地系统提供两个级别,并为一般情况提供了分析下限和半决赛编程上限,为局部麦内型提供了封闭公式。作为无限次施用示例,我们计算了与Jaynes-Cummings耦合的电磁腔中原子的本地胎肉拷贝,以及XXZ Heisenberg链中旋转位点的旋转位点的局部麦角型,表明可以通过在couplent couplent of couplent of coupl的工作量中提取的工作量,这表明可以在couplent of couplent中提取。转型。
We investigate the problem of finding the local analogue of the ergotropy, that is the maximum work that can be extracted from a system if we can only apply local unitary transformation acting on a given subsystem. In particular, we provide a closed formula for the local ergotropy in the special case in which the local system has only two levels, and give analytic lower bounds and semidefinite programming upper bounds for the general case. As non-trivial examples of application, we compute the local ergotropy for a atom in an electromagnetic cavity with Jaynes-Cummings coupling, and the local ergotropy for a spin site in an XXZ Heisenberg chain, showing that the amount of work that can be extracted with an unitary operation on the coupled system can be greater than the work obtainable by quenching off the coupling with the environment before the unitary transformation.