论文标题
通过操作员池尺度缩放自适应量子模拟算法
Scaling adaptive quantum simulation algorithms via operator pool tiling
论文作者
论文摘要
自适应变分的量子模拟算法使用量子计算机的信息来动态创建给定问题的最佳试验波函数。这些算法中的关键成分是一个预定义的操作库,从中构建了试验波形。随着问题大小的增加,找到合适的池对于算法的效率至关重要。在这里,我们提出了一种称为“操作员池瓷砖”的技术,该技术促进了针对任意大型问题实例的问题量池的构建。首先使用大型但计算效率低下的操作员池对问题的较小实例进行适应VQE计算,我们提取最相关的操作员,并使用它们来设计更有效的池用于较大的实例。我们在一个和二维中强烈相关的量子自旋模型上演示了这种方法,发现适应这些系统会为这些系统找到高效的ANSATZ。鉴于许多问题,例如在凝结物理学中引起的问题,具有自然重复的晶格结构,因此我们希望池瓷砖方法是一种适用于此类系统的广泛适用技术。
Adaptive variational quantum simulation algorithms use information from the quantum computer to dynamically create optimal trial wavefunctions for a given problem Hamiltonian. A key ingredient in these algorithms is a predefined operator pool from which trial wavefunctions are constructed. Finding suitable pools is critical for the efficiency of the algorithm as the problem size increases. Here, we present a technique called operator pool tiling that facilitates the construction of problem-tailored pools for arbitrarily large problem instances. By first performing an ADAPT-VQE calculation on a smaller instance of the problem using a large, but computationally inefficient operator pool, we extract the most relevant operators and use them to design more efficient pools for larger instances. We demonstrate the method here on strongly correlated quantum spin models in one and two dimensions, finding that ADAPT automatically finds a highly effective ansatz for these systems. Given that many problems, such as those arising in condensed matter physics, have a naturally repeating lattice structure, we expect the pool tiling method to be a widely applicable technique apt for such systems.