论文标题
图形的FreeNESS索引
The freeness Index of a graph
论文作者
论文摘要
我们定义了有限图G的新整数不变,该图形索引衡量了g可以嵌入在三个速度中的g的程度,以使其及其子量表具有``简单的补语'',即,即与特定范围的索引相关的范围,这些补充是同源的。双覆盖猜想。
We define a new integer invariant of a finite graph G, the freeness index, that measures the extent to which G can be embedded in the 3-sphere so that it and its subgraphs have ``simple" complements, i.e., complements which are homeomorphic to a connect-sum of handlebodies. We relate the freeness index to questions of embedding graphs into surfaces, in particular to the orientable cycle double cover conjecture. We show that a cubic graph satisfying the orientable double cycle cover conjecture has freeness index at least two.