论文标题
通过中央力的连续变化纠缠:量子质量之间的重力应用
Continuous-Variable Entanglement through Central Forces: Application to Gravity between Quantum Masses
论文作者
论文摘要
我们描述了一种完整的方法,用于精确研究附近两个量子质量之间的重力相互作用。由于这些质量的位移远小于其中心之间的初始分离,因此位移与分离比是一种自然参数,可以扩展重力电势。我们表明,此类实验中的纠缠仅当系统演变为非高斯状态时,即至少至少在立方术语扩展时,纠缠才对初始相对动量敏感。表现出了力梯度作为位置摩托米相关性的主要贡献者的关键作用。我们为纠缠增益建立了封闭形式的表达,这表明立方术语的贡献与动量成正比,而四分之一的术语与动量平方成正比。从量子信息的角度来看,结果将应用程序作为非高斯纠缠的动量见证。我们的方法用途广泛,并适用于任何数量的中央交互扩展到任何顺序。
We describe a complete method for a precise study of gravitational interaction between two nearby quantum masses. Since the displacements of these masses are much smaller than the initial separation between their centers, the displacement-to-separation ratio is a natural parameter in which the gravitational potential can be expanded. We show that entanglement in such experiments is sensitive to initial relative momentum only when the system evolves into non-Gaussian states, i.e., when the potential is expanded at least up to the cubic term. A pivotal role of force gradient as the dominant contributor to position-momentum correlations is demonstrated. We establish a closed-form expression for the entanglement gain, which shows that the contribution from the cubic term is proportional to momentum and from the quartic term is proportional to momentum squared. From a quantum information perspective, the results find applications as a momentum witness of non-Gaussian entanglement. Our methods are versatile and apply to any number of central interactions expanded to any order.