论文标题

部分可观测时空混沌系统的无模型预测

On the structure Lie operator of a real hypersurface in the complex quadric

论文作者

Pérez, Juan de Dios, Pérez-López, David, Suh, Young Jin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The almost contact metric structure that we have on a real hypersurface $M$ in the complex quadric $Q^{m}=SO_{m+2}/SO_mSO_2$ allows us to define, for any nonnull real number $k$, the $k$-th generalized Tanaka-Webster connection on $M$, $\hat{\nabla}^{(k)}$. Associated to this connection we have Cho and torsion operators, $F_X^{(k)}$ and $T_X^{(k)}$, respectively, for any vector field $X$ tangent to $M$. From them and for any symmetric operator $B$ on $M$ we can consider two tensor fields of type (1,2) on $M$ that we will denote by $B_F^{(k)}$ and $B_T^{(k)}$, respectively. We will classify real hypersurfaces $M$ in $Q^m$ for which any of those tensors identically vanishes, in the particular case of $B$ being the structure Lie operator $L_ξ$ on $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源