论文标题
通过各向异性磁熵变化重新访问磁订单,Quasi-Two-Two二维金属Ferromagnet,fe $ _4 $ gete $ _2 $
Revisiting the magnetic ordering through anisotropic magnetic entropy change in quasi-two-dimensional metallic ferromagnet, Fe$_4$GeTe$_2$
论文作者
论文摘要
我们已经通过磁化,磁化磁化效应(MCE)和热容量的测量来研究了二维(2D)范德华(VDW)分层材料的铁磁顺序和相变的性质。 fe $ _4 $ gete $ _2 $托管一个复杂的磁性阶段,具有两个不同的过渡:向铁磁性左右,大约$ t_ \ text {c} $ $ \ sim $ 266 k,另一个旋转重新定向过渡(SRT),以$ t_ \ text {srt} $ $ \ sim $ \ sim $ \ sim the magniestization。靠近$ t_ \ text {srt} $ at $ h \ parallel c $,这意味着SRT的一阶性质。围绕两个过渡温度($ t_ \ text {c} $, - $Δ$ s $ s $ _m^\ text {max} $ = 1.95和1.99 j.kg $^{ - 1} $ k $^{ - 1} - $δ$ s $ _m^\ text {max} $ = 3.9和2.4 j.kg $^{ - 1} $ k $^{ - 1} $沿$ h \ parallel AB $和$ h \ h \ parareallel c $)在50 koe磁场上更改。上面的结果显示,与$ t_ \ text {c} $的MCE值相比,$ t_ \ text {srt} $以$ t_ \ text {srt} $的较高较高的MCE值。 MCE在$ t_ \ text {c} $中的缩放分析表明,$δ$ s $ _m(t,h)$续订的clutiver曲线遵循了通用曲线,确认了铁磁过渡的二阶特征。 MCE的相同缩放分析在$ t_ \ text {srt} $上分解,这表明SRT不是二阶相位过渡。磁性熵变化的现场依赖性的指数$ n $最大值$ | n |> 2 $确认了SRT的一阶性质。
We have investigated the nature of ferromagnetic order and phase transitions in two dimensional (2D) van der Waals (vdW) layered material, Fe$_4$GeTe$_2$ through measurements of magnetization, magneto-caloric Effect (MCE), and heat capacity. Fe$_4$GeTe$_2$ hosts a complex magnetic phase with two distinct transitions: paramagnetic to ferromagnetic at around $T_\text{C}$ $\sim$ 266 K and another spin reorientation transition (SRT) at around $T_\text{SRT}$ $\sim $ 100 K. The magnetization measurements shows a prominent thermal hysteresis in proximity to $T_\text{SRT}$ at $H\parallel c$, which implies the first-order nature of SRT. Reasonable MCE has been observed around both transition temperatures ( at around $T_\text{C}$, -$Δ$S$_M^\text{max}$ = 1.95 and 1.99 J.Kg$^{-1}$K$^{-1}$ and at around $T_\text{SRT}$, -$Δ$S$_M^\text{max}$= 3.9 and 2.4 J.Kg$^{-1}$K$^{-1}$ along $H\parallel ab$ and $H\parallel c$ respectively) at 50 kOe magnetic field change. The above results reveal higher MCE value at $T_\text{SRT}$ compared to the values of MCE at $T_\text{C}$. The scaling analysis of MCE at $T_\text{C}$, shows that the rescaled $Δ$S$_M (T, H)$ follow a universal curve confirming the second-order character of the ferromagnetic transition. The same scaling analysis of MCE breaks down at $T_\text{SRT}$ suggesting that SRT is not a second order phase transition. The exponent $n$ from field dependence of magnetic entropy change presents a maximum of $|n|>2$ confirming the first-order nature of SRT.