论文标题

多维人群平衡模型的有效数值方案

Efficient Numerical Schemes for Multidimensional Population Balance Models

论文作者

Inguva, Pavan, Braatz, Richard D.

论文摘要

多维种群平衡模型(PBM)描述了在两个或多个固有特性(例如大小和年龄,或两个独立的空间变量)上分布的化学和生物过程。将附加的内在变量纳入PBM可以提高其描述能力,并且对于捕获感兴趣的特定特征是必不可少的。由于大多数感兴趣的PBM无法分析解决,因此计算上昂贵的高阶差异或有限体积方法经常用于获得准确的数值解决方案。我们提出了一个有限的差异方案,基于运算符分裂和解决每个子问题的数值稳定性限制,该方案达到了某些类别的PBM的离散误差,该误差为零,并且足够低,足以接受其他类别。结合采用专门构造的网格和可变变换,该方案利用了许多类别中存在的差异操作员的交换性能。该方案的计算成本非常低 - 可能与内存重新分配一样低。多个案例研究表明了所提出的方案的性能。

Multidimensional population balance models (PBMs) describe chemical and biological processes having a distribution over two or more intrinsic properties (such as size and age, or two independent spatial variables). The incorporation of additional intrinsic variables into a PBM improves its descriptive capability and can be necessary to capture specific features of interest. As most PBMs of interest cannot be solved analytically, computationally expensive high-order finite difference or finite volume methods are frequently used to obtain an accurate numerical solution. We propose a finite difference scheme based on operator splitting and solving each sub-problem at the limit of numerical stability that achieves a discretization error that is zero for certain classes of PBMs and low enough to be acceptable for other classes. In conjunction to employing specially constructed meshes and variable transformations, the scheme exploits the commutative property of the differential operators present in many classes of PBMs. The scheme has very low computational cost -- potentially as low as just memory reallocation. Multiple case studies demonstrate the performance of the proposed scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源