论文标题

实验性灰盒量子系统识别和控制

Experimental graybox quantum system identification and control

论文作者

Youssry, Akram, Yang, Yang, Chapman, Robert J., Haylock, Ben, Lenzini, Francesco, Lobino, Mirko, Peruzzo, Alberto

论文摘要

理解和控制工程量子系统是开发实用量子技术的关键。但是,鉴于当前的技术局限性,例如制造缺陷和环境噪声,这并不总是可能。为了解决这些问题,已经开发了大量用于量子系统识别和控制的理论和数值方法。这些方法范围从传统曲线配件,这些曲线配件受到描述系统的模型的准确性的限制,到机器学习方法,这些方法提供了有效的控制解决方案,但没有超出模型输出的控制,也没有对基础物理过程的见解。在这里,我们在实验上展示了一种“灰色”方法来构建量子系统的物理模型,并使用它来设计最佳控制。我们报告了超过模型拟合的出色性能,同时产生了单位和哈密顿人,这是从标准监督机器学习模型的结构中获得的数量。我们的方法将物理原理与高准确的机器学习结合在一起,并且在实验中无法直接测量所需的受控数量的任何问题都有效。该方法自然扩展到时间依赖性和开放量子系统,并在量子噪声光谱和取消中应用。

Understanding and controlling engineered quantum systems is key to developing practical quantum technology. However, given the current technological limitations, such as fabrication imperfections and environmental noise, this is not always possible. To address these issues, a great deal of theoretical and numerical methods for quantum system identification and control have been developed. These methods range from traditional curve fittings, which are limited by the accuracy of the model that describes the system, to machine learning methods, which provide efficient control solutions but no control beyond the output of the model, nor insights into the underlying physical process. Here we experimentally demonstrate a "graybox" approach to construct a physical model of a quantum system and use it to design optimal control. We report superior performance over model fitting, while generating unitaries and Hamiltonians, which are quantities not available from the structure of standard supervised machine learning models. Our approach combines physics principles with high-accuracy machine learning and is effective with any problem where the required controlled quantities cannot be directly measured in experiments. This method naturally extends to time-dependent and open quantum systems, with applications in quantum noise spectroscopy and cancellation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源