论文标题
永远不要相信,始终验证:值得信赖的AI的路线图?
Never trust, always verify : a roadmap for Trustworthy AI?
论文作者
论文摘要
人工智能(AI)正在成为我们日常生活中许多系统的转角石,例如自动驾驶汽车,医疗保健系统和无人飞机系统。机器学习是AI的领域,它使系统能够从数据中学习并根据模型对新数据进行决策,以实现给定的目标。 AI模型的随机性质使验证和验证任务具有挑战性。此外,AI模型中存在固有的双重性,例如生殖性偏见,选择偏见(例如种族,性别,颜色)和报告偏见(即结果不反映现实的结果)。越来越多的人特别关注AI的道德,法律和社会影响。 AI系统由于其黑盒性质而难以审核和认证。它们似乎也容易受到威胁。当给出不信任的数据时,AI系统可能会不良,从而使其不安全且不安全。政府,国家和国际组织提出了几种克服这些挑战的原则,但是他们在实践中的应用是有限的,并且在原则上有不同的解释可以偏向实施。在本文中,我们研究了基于AI的系统的信任,以了解AI系统值得信赖的意义,并确定需要采取的行动,以确保AI系统值得信赖。为了实现这一目标,我们首先回顾了为确保AI系统的可信度的现有方法,以确定在理解可信AI是什么的潜在概念差距。然后,我们建议对AI的信任(零值)模型,并建议一组应满足的属性,以确保AI系统的可信度。
Artificial Intelligence (AI) is becoming the corner stone of many systems used in our daily lives such as autonomous vehicles, healthcare systems, and unmanned aircraft systems. Machine Learning is a field of AI that enables systems to learn from data and make decisions on new data based on models to achieve a given goal. The stochastic nature of AI models makes verification and validation tasks challenging. Moreover, there are intrinsic biaises in AI models such as reproductibility bias, selection bias (e.g., races, genders, color), and reporting bias (i.e., results that do not reflect the reality). Increasingly, there is also a particular attention to the ethical, legal, and societal impacts of AI. AI systems are difficult to audit and certify because of their black-box nature. They also appear to be vulnerable to threats; AI systems can misbehave when untrusted data are given, making them insecure and unsafe. Governments, national and international organizations have proposed several principles to overcome these challenges but their applications in practice are limited and there are different interpretations in the principles that can bias implementations. In this paper, we examine trust in the context of AI-based systems to understand what it means for an AI system to be trustworthy and identify actions that need to be undertaken to ensure that AI systems are trustworthy. To achieve this goal, we first review existing approaches proposed for ensuring the trustworthiness of AI systems, in order to identify potential conceptual gaps in understanding what trustworthy AI is. Then, we suggest a trust (resp. zero-trust) model for AI and suggest a set of properties that should be satisfied to ensure the trustworthiness of AI systems.