论文标题
$ 4D $ $ \ MATHCAL {n} \!= \!1 $ gauge理论
Sequential deconfinement and self-dualities in $4d$ $\mathcal{N}\!=\!1$ gauge theories
论文作者
论文摘要
我们将顺序解解的技术应用于四个维度$ \ Mathcal {n} \!= \!1 $ $ usp(2n)$ gauge理论,具有反对称字段和$ 2F $ fastalments。完全脱落的框架是一个长度为$ n $ Quiver。我们使用这种脱合的框架来证明$ USP(2N)$具有反对称场和8美元的基本面。在途中,我们遇到了一个微妙的:在具有退化全体形态操作员的某些颤动中,Seiberg双重性规则的天真应用导致超级电位或手性环。 我们还考虑将$ 3D $ $ \ MATHCAL {n} \!= \!2 $理论降低到$ 3D $ \ $ \ $ \!= \!2 $,恢复已知的完全解义的双重二元组合(2n)$和$ u(n)$量表理论,并获得了新的。
We apply the technique of sequential deconfinement to the four dimensional $\mathcal{N}\!=\!1$ $Usp(2N)$ gauge theory with an antisymmetric field and $2F$ fundamentals. The fully deconfined frame is a length-$N$ quiver. We use this deconfined frame to prove the known self-duality of $Usp(2N)$ with an antisymmetric field and $8$ fundamentals. Along the way we encounter a subtlety: in certain quivers with degenerate holomorphic operators, a naive application of Seiberg duality rules leads to an incorrect superpotential or chiral ring. We also consider the reduction to $3d$ $\mathcal{N}\!=\!2$ theories, recovering known fully deconfined duals of $Usp(2N)$ and $U(N)$ gauge theories, and obtaining new ones.