论文标题
在对角概括的下属操作员矩阵的基础上,并应用于Bargmann空间中的Gribov操作员矩阵
On a Riesz Basis of Diagonally Generalized Subordinate Operator Matrices and Application to a Gribov Operator Matrix in Bargmann Space
论文作者
论文摘要
在本文中,我们研究了特定类别的$ n \ times n $ n $无界运算符矩阵的频谱的变化和riesz基础的存在,称为:对角线和非对角线概括的下属块操作员矩阵。 $ n \ times n $ gribov运算符矩阵的应用程序作用于Bargmann空间,说明了抽象结果。例如,我们通过采用Pomeron的真实参数的特殊值来考虑特定的Gribov操作员矩阵。
In this paper, we study the change of spectrum and the existence of Riesz bases of specific classes of $n\times n$ unbounded operator matrices, called: diagonally and off-diagonally generalized subordinate block operator matrices. An application to a $n\times n$ Gribov operator matrix acting on a sum of Bargmann spaces, illustrates the abstract results. As example, we consider a particular Gribov operator matrix by taking special values of the real parameters of Pomeron.