论文标题

通过线性时间分辨的光电光谱法分析的AU/Fe/MGO(001)异质结构中热电子的超快传输和能量放松

Ultrafast transport and energy relaxation of hot electrons in Au/Fe/MgO(001) heterostructures analyzed by linear time-resolved photoelectron spectroscopy

论文作者

Kühne, Florian, Beyazit, Yasin, Sothmann, Björn, Jayabalan, J., Diesing, Detlef, Zhou, Ping, Bovensiepen, Uwe

论文摘要

在冷凝物质中,散射过程决定了电荷载体的运输。在异质结构的情况下,接口确定了许多动态特性,例如电荷传输和传输以及旋转电流动力学。在这里,我们讨论了光激发的电子动力学及其在单晶质量的晶格匹配的金属金属界面上的传播。使用飞秒时间分辨的线性光电光谱,在光学泵送异质结构的不同成分上,我们建立了一种技术,该技术同时探测电子传播及其能量弛豫。在我们的方法中,近红外的泵脉冲直接激发了AU层中的电子,或者在外部au/fe/mgo(001)异质结构的Fe层中,而瞬态光发射光谱是通过AU表面上的紫外线探针脉冲测量的。在飞秒激光激发时,我们分析了接近费米能量的电子分布的相对变化,并为时间依赖性电子分布的特征特征分析了从Fe层到AU表面的热和非热化电子的传输,反之亦然。从测得的瞬态电子分布中,我们确定了与基于两个温度模型的计算相比的多余能量,并考虑了扩散的电子传输。在此基础上,我们确定了从超排除到扩散传输状态的过渡,以使AU层厚度为20-30〜nm。

In condensed matter, scattering processes determine the transport of charge carriers. In case of heterostructures, interfaces determine many dynamic properties like charge transfer and transport and spin current dynamics. Here we discuss optically excited electron dynamics and their propagation across a lattice-matched, metal-metal interface of single crystal quality. Using femtosecond time-resolved linear photoelectron spectroscopy upon optically pumping different constituents of the heterostructure we establish a technique which probes the electron propagation and its energy relaxation simultaneously. In our approach a near-infrared pump pulse excites electrons directly either in the Au layer or in the Fe layer of epitaxial Au/Fe/MgO(001) heterostructures while the transient photoemission spectrum is measured by an ultraviolet probe pulse on the Au surface. Upon femtosecond laser excitation, we analyze the relative changes in the electron distribution close to the Fermi energy and assign characteristic features of the time-dependent electron distribution to transport of hot and non-thermalized electrons from the Fe layer to the Au surface and vice versa. From the measured transient electron distribution we determine the excess energy which we compare with a calculation based on the two-temperature model and takes diffusive electron transport into account. On this basis we identify a transition from a super-diffusive to a diffusive transport regime to occur for a Au layer thickness of 20-30~nm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源