论文标题

组合和保存圆锥形稳定的多项式

Combinatorics and preservation of conically stable polynomials

论文作者

Codenotti, Giulia, Gardoll, Stephan, Theobald, Thorsten

论文摘要

给定一个封闭的,凸锥$ k \ subseteq \ mathbb {r}^n $,是\ mathbb {c} [\ mathbf {z} $的多变量多项式$ f \,如果其根部不包含$ k $ k $ k $ k $ k $ k $。如果$ k $是非负晶体,则$ k $稳定性专门针对多项式稳定性的通常概念。 我们从通常的稳定性方面的保存操作和组合标准的概括。一个特殊的重点是阳性半足质矩阵(PSD稳定性)的锥。特别是,我们证明了在反转操作员的自然概括下保存PSD稳定性。此外,我们提供有关PSD稳定多项式支持的条件,并表征了PSD稳定多项式特殊系列的支持。

Given a closed, convex cone $K\subseteq \mathbb{R}^n$, a multivariate polynomial $f\in\mathbb{C}[\mathbf{z}]$ is called $K$-stable if the imaginary parts of its roots are not contained in the relative interior of $K$. If $K$ is the non-negative orthant, $K$-stability specializes to the usual notion of stability of polynomials. We develop generalizations of preservation operations and of combinatorial criteria from usual stability towards conic stability. A particular focus is on the cone of positive semidefinite matrices (psd-stability). In particular, we prove the preservation of psd-stability under a natural generalization of the inversion operator. Moreover, we give conditions on the support of psd-stable polynomials and characterize the support of special families of psd-stable polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源