论文标题
Twitter对话预测了每日确认的Covid-19案件
Twitter conversations predict the daily confirmed COVID-19 cases
论文作者
论文摘要
在撰写本文时,Covid-19(2019年冠状病毒病)已扩散到220多个国家和地区。爆发后,大流行的严肃性使人们在社交媒体上更加活跃,尤其是在Twitter和Weibo等微博平台上。现在,大流行特定的话语一直在这些平台上持续数月。先前的研究证实了这种社会产生的对话对危机事件的情境意识的贡献。案件的早期预测对于当局估计应对病毒的生长所需的资源要求至关重要。因此,这项研究试图将公共话语纳入预测模型的设计中,特别针对正在进行的波浪的陡峭山路区域。我们提出了一种基于情感的主题的潜在变量搜索方法,用于设计公开可用的Twitter对话的预测模型。作为用例,我们对澳大利亚Covid-19的日常案例和该国在国内产生的Twitter对话实施了拟议的方法。实验结果:(i)显示了Granger导致每日Covid-19确认的案例的潜在社交媒体变量的存在,并且(ii)确认这些变量为预测模型提供了其他预测能力。此外,结果表明,社交媒体变量的包含在RMSE上引入了48.83--51.38%的改善,而不是基线模型。我们还向公众发布了大规模的Covid-19特定地理位置全球推文数据集Megocov,预计该规模的地理标记数据将有助于通过其他空间和时间上下文理解大流行的对话动态。
As of writing this paper, COVID-19 (Coronavirus disease 2019) has spread to more than 220 countries and territories. Following the outbreak, the pandemic's seriousness has made people more active on social media, especially on the microblogging platforms such as Twitter and Weibo. The pandemic-specific discourse has remained on-trend on these platforms for months now. Previous studies have confirmed the contributions of such socially generated conversations towards situational awareness of crisis events. The early forecasts of cases are essential to authorities to estimate the requirements of resources needed to cope with the outgrowths of the virus. Therefore, this study attempts to incorporate the public discourse in the design of forecasting models particularly targeted for the steep-hill region of an ongoing wave. We propose a sentiment-involved topic-based latent variables search methodology for designing forecasting models from publicly available Twitter conversations. As a use case, we implement the proposed methodology on Australian COVID-19 daily cases and Twitter conversations generated within the country. Experimental results: (i) show the presence of latent social media variables that Granger-cause the daily COVID-19 confirmed cases, and (ii) confirm that those variables offer additional prediction capability to forecasting models. Further, the results show that the inclusion of social media variables introduces 48.83--51.38% improvements on RMSE over the baseline models. We also release the large-scale COVID-19 specific geotagged global tweets dataset, MegaGeoCOV, to the public anticipating that the geotagged data of this scale would aid in understanding the conversational dynamics of the pandemic through other spatial and temporal contexts.