论文标题

Mose中的不对称磁接近互动

Asymmetric magnetic proximity interactions in MoSe$_{2}$/CrBr$_{3}$ van der Waals heterostructures

论文作者

Choi, Junho, Lane, Christopher, Zhu, Jian-Xin, Crooker, Scott A.

论文摘要

原子上薄的半导体和二维磁体之间的磁接近性相互作用(MPI)提供了一种在非磁性单层中操纵自旋和山谷自由度的方法,而无需使用施加的磁场。在这样的范德华(VDW)异质结构中,MPI源于两种材料中自旋依赖性电子波函数之间的纳米尺度耦合,通常它们的总体效应被认为是在半导体单层上作用的有效磁场。在这里,我们证明这张图片虽然吸引人,但并不完整:MPI在VDW异质结构中的影响可能是明显不对称的,与从应用的磁场中相比之下。摩西$ _ {2} $/crbr $ _ {3} $ vdw结构的摩西$ _ {2} $ _ {2} $ _ {3} $ vdw结构的光学反射光谱的光学反射光谱揭示了$ k $的能量转移明显不同的摩西$ _2 $的$ k'$ valleys,这是由于Crbr $ _3 $ _3 $ _3 $ _3 $ _2 $。在A-和B-Exciton共振上都观察到强烈的不对称性。密度功能的计算表明,山谷 - 空气对称MPI敏感地取决于重叠带的自旋依赖性杂交,因此很可能是这种混合VDW结构的一般特征。这些研究表明,单层半导体中选择性控制\ textit {特定}旋转状态和山谷状态的路线。

Magnetic proximity interactions (MPIs) between atomically-thin semiconductors and two-dimensional magnets provide a means to manipulate spin and valley degrees of freedom in nonmagnetic monolayers, without the use of applied magnetic fields. In such van der Waals (vdW) heterostructures, MPIs originate in the nanometer-scale coupling between the spin-dependent electronic wavefunctions in the two materials, and typically their overall effect is regarded as an effective magnetic field acting on the semiconductor monolayer. Here we demonstrate that this picture, while appealing, is incomplete: The effects of MPIs in vdW heterostructures can be markedly asymmetric, in contrast to that from an applied magnetic field. Valley-resolved optical reflection spectroscopy of MoSe$_{2}$/CrBr$_{3}$ vdW structures reveals strikingly different energy shifts in the $K$ and $K'$ valleys of the MoSe$_2$, due to ferromagnetism in the CrBr$_3$ layer. Strong asymmetry is observed at both the A- and B-exciton resonances. Density-functional calculations indicate that valley-asymmetric MPIs depend sensitively on the spin-dependent hybridization of overlapping bands, and as such are likely a general feature of such hybrid vdW structures. These studies suggest routes to selectively control \textit{specific} spin and valley states in monolayer semiconductors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源