论文标题
威尔逊循环通过双尺度限制以大型对称表示形式
Wilson loops in Large Symmetric Representations through a Double-Scaling Limit
论文作者
论文摘要
我们在$ \ Mathcal {n} = 4 $和$ \ Mathcal {n} = 2^{*} $理论的$ \ mathcal {n} = 4 $和$ k $ u(n)$和$ su(n)$中的$ k $ k $ - fold somemetized产品表示。该公式适用于$ k $的极限和小杨米尔耦合$ g $,并带有固定有效耦合$κ\ equiv g^2k $,以及任何有限的$ n $。在$ su(2)$和$ u(2)$案例中,可以为任何$ k $获得封闭的分析公式,而$ 1/k $ $系列的扩展是渐进的。在$ n \ gg 1 $限制中,具有$ n \ ll k $,有一个重叠的制度,可以在该制度中与全息图的结果面对面。还提供了简单的公式,用于$ k $ - 对称的威尔逊循环和手性主操作员之间的相关功能。
We derive exact formulas for circular Wilson loops in the $\mathcal{N}=4$ and $\mathcal{N}=2^{* }$ theories with gauge groups $U(N)$ and $SU(N)$ in the $k$-fold symmetrized product representation. The formulas apply in the limit of large $k$ and small Yang-Mills coupling $g$, with fixed effective coupling $κ\equiv g^2k$, and for any finite $N$. In the $SU(2)$ and $U(2)$ cases, closed analytic formulas are obtained for any $k$, while the $1/k$ series expansions are asymptotic. In the $N\gg 1$ limit, with $N\ll k$, there is an overlapping regime where the formulas can be confronted with results from holography. Simple formulas for correlation functions between the $k$-symmetric Wilson loops and chiral primary operators are also given.